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SUMMARY

This article considers numerical implementation of the Crank–Nicolson/Adams–Bashforth scheme for the
two-dimensional non-stationary Navier–Stokes equations. A finite element method is applied for the spatial
approximation of the velocity and pressure. The time discretization is based on the Crank–Nicolson scheme
for the linear term and the explicit Adams–Bashforth scheme for the nonlinear term. Comparison with
other methods, through a series of numerical experiments, shows that this method is almost unconditionally
stable and convergent, i.e. stable and convergent when the time step is smaller than a given constant.
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1. INTRODUCTION

Let � be a bounded domain in R2 assumed to have a Lipschitz continuous boundary �� and to
satisfy a further condition (A1) stated in Section 2. The following time-dependent Navier–Stokes
problem is considered:

ut −��u+(u ·∇)u+∇ p = f, divu=0, (x, t)∈�×(0,T ]
u(x,0) = u0(x), x ∈�, u(x, t)|�� =0, t ∈[0,T ] (1)

where u=u(x, t)=(u1(x, t),u2(x, t)) represents the velocity vector, p= p(x, t) the pressure, f =
f (x, t) the prescribed body force, u0(x) the initial velocity, �>0 the viscosity, and T>0 a finite
time.

There are numerous works devoted to the development of efficient schemes for the Navier–
Stokes equations [1–24], fully implicit, semi-implicit (semi-explicit), and explicit. Among them,
high-order schemes are of more interest since first-order schemes are not sufficiently accurate for
large time approximations. A key issue is the stability condition of schemes. Usually fully implicit
schemes are (almost) unconditionally stable. However, at each time step, one has to solve a system
of nonlinear equations. Although an explicit scheme is much easy in computation, it suffers the
severely restricted time step size from stability requirement. A popular approach is based on an
implicit scheme for the linear term and a semi-implicit scheme or an explicit scheme for the
nonlinear term. A semi-implicit scheme for the nonlinear term results in a linear system with a
variable coefficient matrix of time and an explicit treatment for the nonlinear term gives a constant
matrix. Furthermore, stability and convergence conditions of the schemes have been studied by
many authors, see [2, 5, 7, 10–12, 14–17].

In this article, 0<h<1 denotes the mesh size in the spatial direction and 0<�=T/N<1 denotes
the time step size in the time direction. Recently, the Euler semi-implicit scheme based on the mixed
finite element for solving the nonstationary Navier–Stokes equations has been studied widely.
Examples include the following works:

• For a two-step scheme with a semi-implicit treatment for the nonlinear term by He and Li [5].
• For the Crank–Nicolson extrapolation scheme in which the discretization for the nonlinear

term is semi-implicit by He [6].
• For the Crank–Nicolson/Adams–Bashforth scheme in which the nonlinear term is treated

explicitly by Marion and Temam [11], and recently, Tone [13].
• A modified Crank–Nicolson/Adams–Bashforth scheme was proposed by Johnston and

Liu [18].
• For a three-step backward extrapolating scheme (explicit for the nonlinear term) by Baker

et al. [2].
In above works, the time step condition

�h−��C0 (2)

for some �>0 was imposed when a semi-implicit or an explicit scheme is applied for the nonlinear
term, except the Crank–Nicolson extrapolation scheme in [6] in which a semi-implicit scheme is
used for the nonlinear term. Here and after, C0 denotes positive constant depending on the data
(�,�,T,u0, f ).
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ADAMS–BASHFORTH AND CRANK–NICOLSON SCHEME 649

The second-order Crank–Nicolson/Adams–Bashforth scheme for solving the time-dependent
Navier–Stokes equations consists in using a finite element pair (Xh,Mh) for the spatial discretiza-
tion and the Crank–Nicolson scheme for the linear term and the Adams–Bashforth scheme for the
nonlinear term for the time discretization. Under the assumption of u0∈H2(�)2∩H1

0 (�)2 with
divu0=0 and f ∈L∞(0,T ;H1(�)2), ft , ftt ∈L∞(0,T ; L2(�)2), He and Sun [19] had proven that
the scheme is almost unconditionally stable, i.e.

‖dtumh ‖2L2 +�‖Ahu
m
h ‖2L2��, 1�m�N (3)

when the condition ��C0 is satisfied. Moreover, they also provided the optimal error estimates

‖u(tm)−umh ‖L2��(�−1(tm)�2+h2), 1�m�N (4)

‖u(tm)−umh ‖H1��(�−1/2(tm)�+h), 1�m�N (5)

‖p(tm)− pmh ‖L2��(�−1(tm)�+�−1/2(tm)h), 1�m�N (6)

where the finite element space pair (Xh,Mh) satisfies the approximation assumption (A3) stated in
Section 3, �(t)=min{1, t}, and � is some positive constants depending on the data (�,�,T,u0, f ),
and Ah is a discrete Stokes operator.

This article focuses on the numerical implementation of the Crank–Nicolson/Adams–Bashforth
scheme for the two-dimensional non-stationary Navier–Stokes equations. A finite element method
is applied for the spatial approximation of the velocity and pressure. The time discretization is based
on the Crank–Nicolson scheme for the linear term and the explicit Adams–Bashforth scheme for
the nonlinear term. Numerical examples demonstrate that the Crank–Nicolson/Adams–Bashforth
scheme is almost unconditionally stable and convergent by comparing with the Euler implicit
scheme and the Crank–Nicolson extrapolation scheme, respectively, when the time step � is small
than some constant C0.

2. FUNCTIONAL SETTING OF THE NAVIER–STOKES EQUATIONS

For the mathematical setting of problem (1), the following Hilbert spaces are introduced:

X =H1
0 (�)2, Y = L2(�)2, M= L2

0(�)=
{
q∈L2(�);

∫
�
q dx=0

}

The space L2(�)d , d=1,2,4, is equipped with the usual L2-scalar product (·, ·) and L2-norm
‖·‖L2 . The spaces H1

0 (�) and X are equipped with their usual scalar product and equivalent norm

((u,v))=(∇u,∇v), ‖u‖H1
0
=‖∇u‖L2

Next, let the closed subset V of X be given by

V ={v∈ X;divv=0}
and denote by H the closed subset of Y , i.e.

H ={v∈Y ;divv=0,v ·n|�� =0}
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More details on these spaces can be found in [4, 17, 21, 25] for details on these spaces. Here the
Stokes operator is defined by A=−P�, where P is the L2-orthogonal projection of Y onto H .
As mentioned above, a further assumption on � is presented in [7].

(A1) Assume that � is smooth so that the unique solution (v,q)∈(X,M) of the steady Stokes
problem

−��v+∇q=g, divv=0 in �, v|�� =0

for any prescribed g∈Y exists and satisfies

‖v‖H2 +‖q‖H1�c‖g‖L2

where c>0 is a generic constant depending on � and � which may stand for different values at its
different occurrences.

The validity of assumption (A1) is known (see [4, 17, 21, 26]) if �� is of C2 or if � is a
two-dimensional convex polygon. From the assumption (A1), it is well known that

‖v‖H2�c‖Av‖L2, v∈D(A)=H2(�)2∩V (7)

‖v‖L2��0‖v‖H1
0
, v∈ X, ‖v‖H1

0
��0‖Av‖L2, v∈D(A) (8)

where �0 is a positive constant depending only on � [21, 25, 27].
Also, a further assumption about the prescribed data for problem is presented for problem (1).
(A2) The initial velocity u0(x) and the force f (x, t) satisfy that u0∈D(A), f ∈L∞(0,T ;H1(�)2),

ft , ftt ∈L∞(0,T ;Y ) with

‖Au0‖L2 + sup
0�t�T

{‖ f (t)‖H1 +‖ ft (t)‖L2 +‖ ftt (t)‖L2}�C

for some positive constant C . For the convenience, the following bilinear operator is introduced:

B(u,v)=(u ·∇)v+ 1
2 (divu)v, u,v∈ X

And the continuous bilinear forms a(·, ·) and d(·, ·) on X×X and X×M are defined, respec-
tively, by

a(u,v)=�((u,v)), u,v∈ X

and

d(v,q)=(q,divv), v∈ X, q∈M

and a trilinear form on X×X×X is defined by

b(u,v,w) = 〈B(u,v),w〉X ′,X =((u ·∇)v,w)+ 1
2 ((divu)v,w)

= 1
2 ((u ·∇)v,w)− 1

2 ((u ·∇)w,v), u,v,w∈ X

With the above notations, the variational formulation of problem (1) reads as follows: find
(u, p)∈(X,M) for all t ∈(0,T ] such that for all (v,q)∈(X,M),

(ut ,v)+a(u,v)−d(v, p)+d(u,q)+b(u,u,v)=( f,v) (9)

u(0)=u0 (10)
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3. FINITE ELEMENT GALERKIN APPROXIMATION

Let h>0 be a real positive parameter. The finite element subspace (Xh,Mh) of (X,M) is char-
acterized by Jh = Jh(�), a partitioning of �̄ into triangles K or quadrilaterals K , assumed to be
uniformly regular as h→0.

The subspace Vh of Xh is given by

Vh ={vh ∈ Xh;d(vh,qh)=0 ∀qh ∈Mh} (11)

Let Ph :Y→Vh denote the L2-orthogonal projection defined by

(Phv,vh)=(v,vh), v∈Y, vh ∈Vh

Assume that the couple (Xh,Mh) satisfies the following approximation properties:
(A3) For each v∈H2(�)2∩X and q∈H1(�)∩M , there exist approximations �hv∈ Xh and

	hq∈Mh such that

‖v−�hv‖H1
0
�ch‖v‖H2, ‖q−	hq‖L2�ch‖q‖H1 (12)

together with the inverse inequality

‖vh‖H1
0
��h−1‖vh‖L2, vh ∈ Xh (13)

and there holds the so-called inf–sup inequality: for each qh ∈Mh , there exist vh ∈ Xh,vh =0,
such that

d(vh,qh)�
‖qh‖L2‖vh‖H1
0

(14)

where � and 
 are positive constants depending on �.
The standard finite element Galerkin approximation of (9)–(10) based on (Xh,Mh) reads as

follows: find (uh, ph)∈(Xh,Mh) such that for all 0<t�T and (vh,qh)∈(Xh,Mh),

(uht ,vh)+a(uh,vh)−d(vh, ph)+d(uh,qh)+b(uh,uh,vh)=( f,vh) (15)

uh(0)=u0h = Phu0 (16)

With the above statements, a discrete Stokes operator Ah =−Ph�h is defined through the
condition that (−�huh,vh)=((uh,vh)) for all uh,vh ∈ Xh . The restriction of Ah to Vh is invertible,
with the inverse A−1

h . Since A−1
h is self-adjoint and positive definite, the ‘discrete’ Sobolev norms

on Vh , of any order r ∈ R can be defined by

‖vh‖r =‖Ar/2
h vh‖L2, vh ∈Vh

Under the conditions above, and with some further assumptions about the structure of the spaces
Xh and Mh , it has been shown in Heywood and Rannacher [21] that

‖u(t)−uh(t)‖0+h‖∇(u(t)−uh(t))‖0+�1/2(t)h‖p(t)− ph(t)‖0��h2 (17)

for all t ∈(0,T ].
Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:647–659
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4. THE CRANK–NICOLSON/ADAMS–BASHFORTH SCHEME AND RELATED
NUMERICAL SCHEMES

In this section the time discretization of the finite element Galerkin approximation (15)–(16) is
considered. Let tn =n�(n=0,1, . . . ,N ), �=T/N the time step size, and N an integer. Owing to
the nature of the Adams–Bashforth scheme of three levels in time, initial value u0h =u0h = Phu0
is given and (u1h, p

1
h)∈(Xh,Mh) is defined by solving the corresponding Stokes equations and the

Euler-backward scheme:

(dtu
1
h,vh)+a(u1h,vh)−d(vh, p

1
h)+d(u1h,qh)+b(u0h,u

0
h,vh)=( f (t1),vh) (18)

for all (vh,qh)∈(Xh,Mh).
Now, the finite element solutions (unh, p

n
h)∈(Xh,Mh), n=2, . . . ,N , are defined recursively, by

setting

(dtu
n
h,vh)+a(ūnh,vh)−d(vh, p

n
h)+d(ūnh,qh)+ 3

2b(u
n−1
h ,un−1

h ,vh)

− 1
2b(u

n−2
h ,un−2

h ,vh)=( f̄ (tn),vh) (19)

or

(dtu
n
h,vh)+a(ūnh,vh)−d(vh, p

n
h)+d(ūnh,qh)+b(ūn−1

h , ūn−1
h ,vh)

+b(dtu
n−1
h , ūn−1

h ,vh)�+b(ūn−1
h ,dtu

n−1
h ,vh)�+ 1

4b(dtu
n−1
h ,dtu

n−1
h ,vh)�

2

=( f̄ (tn),vh) (20)

for all (vh,qh)∈(Xh,Mh). Here, the following notations are introduced:

ūnh = 1

2
(unh+un−1

h ), ūh(tn)= 1

2
(uh(tn)+uh(tn−1)), dtu

n
h = 1

�
(unh−un−1

h )

Theorem 4.1
Suppose that the assumptions (A1)–(A3) are valid and 0<�<1 satisfies the following stability
condition:

160c20�
2
0�

−2�2max{1,�,�1/21 }��1 (21)

Then the solution (unh, p
n
h)∈(Xh,Mh) defined by (18) and (19) satisfies

‖umh ‖20+��
m∑

n=1
‖ūnh‖21��0 (22)

‖umh ‖21+��
m∑

n=1
‖Ahū

n
h‖20��1 (23)

‖dtumh ‖20+�‖Ahu
m
h ‖20+‖pmh ‖20+�‖dtumh ‖21���2 (24)

for all 1�m�N , where �0��′
0,�1��′

1 and �2��′
2 are some positive constants depending on the

data (�,�,T,u0, f ).
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Theorem 4.2
Under the assumptions of Theorem 4.1, the solution (unh, p

n
h)∈(Xh,Mh) defined by (18) and (19)

satisfies

�(tm)‖uh(tm)−umh ‖0+�1/2(tm)�‖uh(tm)−umh ‖1���2, tm ∈(0,T ] (25)

�(tm)‖ph(tm)− pmh ‖0���, tm ∈(0,T ] (26)

The proof of Theorems 4.1 and 4.2 can be found in [19].
Then, the known Crank–Nicolson extrapolation scheme of three levels in time are recalled with

the initial solution u0h =u0h = Phu0 and (u1h, p
1
h)∈(Xh,Mh) by solving the Stokes equations and

the following Navier–Stokes equations [7]:
(dtu

1
h,vh)+a(ū1h,vh)−d(vh, p

1
h)+d(ū1h,qh)+b(ū1h, ū

1
h,vh)=( f̄ (t1),vh) (27)

for all (vh,qh)∈(Xh,Mh), respectively. Now, the finite element solutions (unh, p
n
h)∈(Xh,Mh),

n=2, . . . ,N are defined by the Crank–Nicolson extrapolation scheme [6, 7]
(dtu

n
h,vh)+a(ūnh,vh)−d(vh, p

n
h)+d(ūnh,qh)+b( 32u

n−1
h − 1

2u
n−2
h , ūnh,vh)=( f̄ (tn),vh) (28)

for all (vh,qh)∈(Xh,Mh).
Under the assumptions of Theorem 4.1, the stability and convergence results for the

Crank–Nicolson/Adams–Bashforth scheme are true for the known Crank–Nicolson extrapola-
tion scheme, see [6].

Finally, the Euler implicit scheme is recalled as follows: find (unh, p
n
h)∈(Xh,Mh), n=1, . . . ,N ,

such that

(dtu
n
h,vh)+a(unh,vh)−d(vh, p

n
h)+d(unh,qh)+b(unh,u

n
h,vh)=( f (tn),vh) (29)

for all (vh,qh)∈(Xh,Mh). It has been proved that the Euler implicit scheme is unconditional
stable, and convergence, with the following error estimates:

‖u(tm)−umh ‖0��(�+h2), tm ∈(0,T ] (30)

‖u(tm)−umh ‖1��(�+�−1/2(tm)h), tm ∈(0,T ] (31)

‖p(tm)− pmh ‖0��(�−1(tm)�+�−1/2(tm)h), tm ∈(0,T ] (32)

5. NUMERICAL RESULTS

In order to complement the theoretical results with respect to the Crank–Nicolson/Adams–
Bashforth scheme for the time-dependent Navier–Stokes equations, some numerical experiments
are presented in this section.

In all experiments, � is the unit square in R2. The finite element discretization uses a triangle
mesh with the stable P1b−P1 pair for the velocity and pressure. The mesh is obtained by dividing
� into squares and then drawing a diagonal in each square. The exact solution for the velocity

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:647–659
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u=(u1,u2) and pressure p are given as follows:
u(x, t)=(u1(x, t),u2(x, t)), p(x, t)=10(2x1−1)(2x2−1)cos(t)

u1(x, t)=10x21(x1−1)2x2(x2−1)(2x2−1)cos(t)

u2(x, t)=−10x1(x1−1)(2x1−1)x22(x2−1)2 cos(t)

Then, the body force f (x, t) is deduced from the exact solution and (1).
The first issue considers the stability of the Crank–Nicolson/Adams–Bashforth scheme for the

time-dependent Navier–Stokes equations. It is well known that the Euler implicit scheme is uncon-
ditionally stable among all kinds of the schemes. To establish a reference point for the evaluation
of the possible impact from the Crank–Nicolson/Adams–Bashforth scheme, the same mesh is
designed for the Euler implicit scheme, the Crank–Nicolson extrapolation scheme, and the Crank–
Nicolson/Adams–Bashforth scheme. Especially, the stability of the Crank–Nicolson/Adams–
Bashforth scheme with the Euler implicit scheme for the large time step in stability aspect is
compared.

Obviously, numbered discrete points of the velocity and pressure along the vertical line passing
through the geometrical center of the cavity can be seen in a crossplot (cf. Figure 1). It is noted that
1/h=20, T =1s, the reference time step �=0.001, and the solution of the given Stokes equations
as an initial value. The results of the Euler implicit scheme with �(=0.001)<1/h2(=0.0025) are
served as a standard of measurement. Then, three different time steps �=0.1,0.01, and 0.001 are
tested for the Crank–Nicolson/Adams–Bashforth scheme. Seen from Figure 1, there are no any
negative effect on the large time step for the time-dependent Navier–Stokes equations by using the
Crank–Nicolson/Adams–Bashforth scheme. Also, the same results are obtained by using Crank-
Nicolson/Adams–Bashforth scheme with different time steps and the Euler implicit scheme with
the reference time step. Accurately, further numerical study requires the results of the maximal
H1- and L2-norm of the velocity and pressure. For means of comparison with the Euler implicit
scheme, we pick out the maximal H1- and L2-norm of the velocity and pressure among several
time iterative step on the same mesh. The results provided in Tables I–IV indicate that the Crank–
Nicolson/Adams–Bashforth scheme can almost obtain the same stability as the Euler implicit
scheme. In brief, results from Figure 1 and Tables I–IV show that same excellent stability of two
schemes is obtained at the same time.
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Figure 1. Comparison of u-velocity and p-pressure with different time steps � (�=0.1 and 1/h=20) for
the Crank–Nicolson/Adams–Bashforth scheme.
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Table I. The norm sup0�tm�5 ‖∇umh ‖0 of the Euler implicit scheme(�=0.1 and T =5).

�

1/h 0.5 1.0 1.1 1.2 1.3 1.4

10 0.199833 0.199832 0.199828 0.19983 0.199814 ∞
20 0.139728 0.139726 0.139719 0.139722 0.134713 ∞
40 0.135008 0.135006 0.134999 0.135002 0.134972 ∞
60 0.13475 0.134748 0.13474 0.134743 0.134713 ∞
80 0.134706 0.134704 0.134697 0.1347 0.13467 ∞

Table II. The norm sup0�tm�5 ‖pmh ‖0 of the Euler implicit scheme (�=0.1 and T =5).

�

1/h 0.5 1.0 1.1 1.2 1.3 1.4

10 3.33098 3.33098 3.33098 3.33098 3.33098 ∞
20 3.33317 3.33317 3.33317 3.33317 3.33333 ∞
40 3.33332 3.33332 3.33332 3.33332 3.33332 ∞
60 3.33333 3.33333 3.33333 3.33333 3.33333 ∞
80 3.33333 3.33333 3.33333 3.33333 3.33333 ∞

Table III. The norm sup0�tm�5 ‖∇umh ‖0 of the Crank–Nicolson/Adams–Bashforth
scheme (�=0.1 and T =5).

�

1/h 0.5 1.0 1.1 1.2 1.3 1.4

10 0.317589 0.483669 0.493476 0.501099 0.507129 ∞
20 0.275123 0.470491 0.482361 0.491707 0.499179 ∞
40 0.275123 0.471632 0.484025 0.493825 0.501689 ∞
60 0.269785 0.472026 0.484516 0.4944 0.502336 ∞
80 0.269617 0.47218 0.484703 0.494617 0.502579 ∞

Table IV. The norm sup0�tm�5 ‖pmh ‖0 of the Crank–Nicolson/Adams–Bashforth
scheme (�=0.1 and T =5).

�

1/h 0.5 1.0 1.1 1.2 1.3 1.4

10 3.13243 2.56733 2.42305 2.2738 2.1187 ∞
20 3.13645 2.56983 2.42481 2.27424 2.11937 ∞
40 3.13645 2.57019 2.42512 2.27402 2.11923 ∞
60 3.13723 2.57024 2.42516 2.27396 2.11920 ∞
80 3.13727 2.57026 2.42518 2.27394 2.11917 ∞

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:647–659
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Figure 2. Rate analysis for the velocity and pressure (the Crank–Nicolson extrapolation scheme and the
Crank–Nicolson/Adams–Bashforth scheme, �=0.1).

Table V. The convergence of the Crank–Nicolson extrapolation scheme (�=0.1 and �=h).

1/h CPU (s) ‖u−uh‖0‖u‖0
‖u−uh‖1‖u‖1

‖p−ph‖0‖p‖0
10 60.016 0.100333 0.776956 0.00861975
20 183.938 0.0180421 0.226584 0.00210659
30 242.157 0.00705652 0.120115 0.000944405
40 483.454 0.00389711 0.0804756 0.000543721
50 849.328 0.00270418 0.0603698 0.000362297

Table VI. The convergence of the Crank–Nicolson/Adams–Bashforth scheme (�=0.1 and �=h).

1/h CPU (s) ‖u−uh‖0‖u‖0
‖u−uh‖1‖u‖1

‖p−ph‖0‖p‖0
10 2.609 0.100709 0.784026 0.00861963
20 18.594 0.0176201 0.225956 0.00210175
30 69.313 0.00650648 0.120361 0.000935603
40 157.079 0.00316256 0.0803447 0.000529379
50 308.078 0.0018043 0.0603227 0.000341252

The second issue is to study the convergence rate of the Crank–Nicolson/Adams–Bashforth
scheme for the time-dependent Navier–Stokes equations. As mentioned above, optimal order results
can be obtained in [6, 7, 17]. Except for the Euler implicit scheme, the error of the temporal
discretization is of second order in time step � under the assumptions on the smoothness of the data.
Obviously, the results provided in Figure 2 and Tables V–VI, indicate that it takes less CPU time
to compute the time-dependent Navier–Stokes equations by using the Crank–Nicolson/Adams–
Bashforth scheme and the Crank–Nicolson/Adams–Bashforth scheme has the same performance
as the Crank–Nicolson extrapolation scheme in convergence aspect.

Driven cavity flow serves as a standard benchmark problem for the Navier–Stokes equations.
Here, the driven cavity flow problem on the unit square with homogeneous boundary conditions
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Figure 3. The velocity field and the pressure level lines for the derive cavity: the Euler implicit scheme (top),
the Crank–Nicolson extrapolation scheme (middle) and the Crank–Nicolson/Adams–Bashforth scheme

(bottom) (�=0.01,0.05,0.1,�=0.1).

on three sides, and on the top we set the tangential velocity to be cos(t) and the normal velocity to
be zero. Comparison is also made between three proposed methods, the Euler implicit scheme, the
Crank–Nicolson extrapolation scheme, and the Crank–Nicolson/Adams–Bashforth scheme with
�=0.1,T =1s and 1/h=30 and the various time step �=0.01,0.05 , and 0.1 for the time-dependent
Navier–Stokes equations. From Figure 3, the graphics of the three schemes are completely
consistent.
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In conclusion, the Crank–Nicolson/Adams–Bashforth scheme has excellent stability and conver-
gence with the large time step. Therefore, it has even more potential in large-scale computation.
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